Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 23(1): e202100645, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34626067

RESUMO

Hexagonal boron nitride (h-BN) and exfoliated nanosheets (BNNs) not only resemble their carbon counterparts graphite and graphene nanosheets in structural configurations and many excellent materials characteristics, especially the ultra-high thermal conductivity, but also offer other unique properties such as being electrically insulating and extreme chemical stability and oxidation resistance even at elevated temperatures. In fact, BNNs as a special class of 2-D nanomaterials have been widely pursued for technological applications that are beyond the reach of their carbon counterparts. Highlighted in this article are significant recent advances in the development of more effective and efficient exfoliation techniques for high-quality BNNs, the understanding of their characteristic properties, and the use of BNNs in polymeric nanocomposites for thermally conductive yet electrically insulating materials and systems. Major challenges and opportunities for further advances in the relevant research field are also discussed.


Assuntos
Grafite , Nanocompostos , Compostos de Boro , Condutividade Térmica
2.
Nanoscale Adv ; 2(6): 2507-2513, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133377

RESUMO

High-quality boron nitride nanosheets (BNNs) characterized by large aspect ratios and less defective surfaces and structures are in demand for thermal management and other uses that exploit the uniquely advantageous properties of boron nitride, such as being highly thermally conductive yet electrically insulating and extreme chemical and thermal stabilities. In this study, an ammonia-assisted exfoliation processing method was developed and applied to the preparation of high-quality BNNs. As a demonstration of the excellent potential of these nanomaterials, the BNNs were dispersed in polyethylene polymers for nanocomposite films of superior thermal transport performance at levels significantly beyond the state of the art in the literature. Effects of crosslinking in the nanocomposite film structure on thermal transport were also explored and favorable outcomes were achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...